Institutional and Faculty Roles and Responsibilities in the Emerging Environment of University-Wide Interdisciplinary Research Structures: Report of the 2001-2002 Research and Graduate Affairs Committee

William H. Campbella, Wayne K. Andersonb, Gilbert J. Burckartc, Alice M. Clarkd, Russell J. DiGatee, Vincent H.L. Leef, Michael E. Rogersg and Kenneth W. Millerh

aSchool of Pharmacy, University of North Carolina, Chapel Hill NC; bSchool of Pharmacy, University at Buffalo, The State University of New York, Buffalo NY; cSchool of Pharmacy, University of Pittsburgh, Pittsburgh PA; dSchool of Pharmacy, University of Mississippi, University MS; eSchool of Pharmacy, University of Maryland, Baltimore MD; fSchool of Pharmacy, University of Southern California, Los Angeles CA; gNational Institute of General Medical Sciences, Bethesda MD; hAmerican Association of Colleges of Pharmacy, Alexandria VA.

The AACP by-laws state that the Research and Graduate Affairs Committee (RGAC) is to provide assistance to the Association in developing its research, graduate education, and scholarship agenda. This assistance may include facilitating colleges and schools in for muting and advancing legislative and regulatory initiatives and nurturing collaborative activities with organizations sharing an interest in issues related to the pharmaceutical sciences.

The following charges were given to the 2001-2002 RGAC by AACP President Milap A. Nahata regarding emerging institutional models for supporting graduate education and research in the pharmaceutical sciences. President Nahata charged the committee as follows:

Consider the impact of increasing external financial support of interdisciplinary research, the establishment of university-wide research centers and institutes, and the loss of traditional departmentally-based graduate programs on the quality of graduate education and the pharmaceutical sciences research enterprise in colleges and schools of pharmacy. What impact will these trends have on the recruitment, financial support, and eventual careers of graduate students in the pharmaceutical sciences? What impact will the movement towards interdisciplinary research have on the promotion and tenure of faculty in colleges and schools of pharmacy that expect non-tenured faculty to demonstrate "independence" in their research activities? Suggest strategies and actions for AACP and its member institutions to undertake in order to maximize opportunities for faculty research and graduate education in this new environment.

The committee charge contains several statements about national trends in graduate education and research as a function of an evolutionary university and college structure. They include the following:

\begin{itemize}
 \item There is an increase in external financial support of interdisciplinary research.
 \item There is an increase in the establishment of university-wide research programs and institutes.
 \item There will be a relative decline in departmentally-based graduate programs.
 \item The increase in university-wide research programs will have an impact on the promotion and tenure policies and practices in colleges and schools of pharmacy.
\end{itemize}

The committee examined these statements, discussed potential approaches to dealing positively with these emerging national trends, and made suggestions for colleges and schools of pharmacy to consider in context to what is happening on their own campuses. Throughout this report, the term, pharmaceutical science refers to all pharmacy faculty-related research, independent of departmental designation.

BACKGROUND

The Structure of Institutional Centers, Institutes, Laboratories, and Programs

A sample of AACP members’ Web sites provides examples of a large variety of centers, institutes, laboratories, and programs along with the traditional descriptions of professional and graduate degree programs. It becomes immediately apparent that a universal definition of a center, institute, laboratory, or program is lacking across campuses, although there may be differentiation on a particular campus. These structures have the common distinction of claiming to bring a collaborative focus to a particular area of research (e.g., Center for Drug Discovery) or a specific disease (e.g., Cancer Center). Centres, institutes, laboratories, and programs can be either within or among academic units in structure and membership. These structures are of two distinct types. The first consists only of college/school faculty, either from one or more departments1. The second type, and the primary focus of this report, is that which includes faculty from different colleges and schools across campus.

Institutional Programs: The structures of primary concern to the committee, the centers, institutes, laboratories, and programs with faculty participation from several administrative units, will henceforth be referred to as Institutional Programs (IPs). IPs have an increasing

1College/school programs, referred to as small "c's" or centers, can have positive benefits if there is general agreement by the faculty that the center offers the college/school opportunities for research or teaching beyond the traditional departmental structure. The formation of such centers should follow a set of guidelines developed and approved by the college/school’s administration and/or faculty governance structure. Adding a center to an existing college/school administrative structure should result in expanded or synergistic opportunities for collaborative research, teaching, or service, not as a mechanism for bypassing existing departmental leadership or faculty governance.

*Chair

Institutional Programs

Increase in University-Wide Research Programs and Institutional Programs

The Association of Academic Health Centers released a report, "Trends in the Research Enterprise of Academic Health Centers," in December 2001(2). The report was a compilation of a survey completed by CEOs of academic health centers (AHCs) on the research enterprise at their institutions, the funding of that enterprise, and its desired outcomes. The 75 respondents were from both private and public institutions, but the majority were those from state university-affiliated AHCs. A selection of the summary highlights of the AHC report follows:

- Almost all AHCs are expanding their research enterprise with an increase in federal (NIH) and state funding being major incentives.
- University and state recognition and prestige remain significant motivating factors to expand the research enterprise.
- Structures and organizations are changing to accommodate the increased emphasis on research including support for technology transfer, intellectual property, and commercialization, research parks, incubators, and institutes.
- Universities are nurturing research and business to create biotechnology sectors in their local and/or regional areas. State and local officials are pressing economic development through concomitant industry partnerships and the commercialization of university research.
- Industry is playing a significant role as a source of funding for research ventures and as a source of partnerships, alliances, and collaborations.

Although the large increases in the NIH budget over the past five years have provided a strong incentive for an expanded university biomedical research enterprise, much of the expansion in centers and institutes is being financed by specially-allocated state appropriations, tobacco settlement funds, institutional fund raising activities, industry funds, and reallocation of internal university funds, the latter often obtained through a budget or personnel "tax" on individual colleges and schools. Legislatures are looking to their state universities to be an engine of economic development, particularly in biotechnology-driven industries that are viewed as substitutes for the labor-intensive manufacturing industries that have closed or moved to lower wage localities. (3)

In addition to its roles of stimulating interdisciplinary research, IPs provides a mechanism for university administrators to invest in expensive but necessary research infrastructure (e.g., laboratory/animal facilities, instrumentation) in a single high visibility location, rather than scattered in departments around campus. This in turn, provides opportunities for large gift fund raising and a means to garner indirect costs from colleges/schools to help pay for the IP infrastructure. In the slow, deliberative department-focused academic environment, IPs may appear to the university administration as a means to react quickly to rapid advances in science and technology (i.e., genomics, proteomics) and focus financial and faculty resources in research areas that have a high potential for funding and results, particularly those with commercial development opportunities. The movement away from college or school-based programs to intercollegiate or university-based programs appears to be a national trend and may, in fact, be "inevitable."

The Coalescence of Academic Disciplines in the Biomedical and Pharmaceutical Sciences

The terms, interdisciplinary and multidisciplinary are often used interchangeably, and their concomitant use is not uncommon. Both
terms refer to making use of more than two distinct academic disciplines to accomplish a task or solve a problem. In the not-too-distant past, a faculty member's academic discipline was defined by his/her academic department affiliation and disciplinary science association (e.g., ASPET, APS) membership. Within the biosciences, departments have either disappeared or been supplemented by more multi-disciplinary research structures such as neurosciences, cellular/molecular biology, and genomics with or without graduate education program components, often supported by a Program Project Grant (e.g., P01, P50) and/or Training Grant (T32). Conversely, having an existing IP may increase the probability of successfully obtaining a Program Project Grant or Training Grant. Interdisciplinary Training Grants often have long lives, and can serve an infrastructure role for an interdisciplinary program.

Society membership as an identifying feature of academic discipline has also evolved in several directions. One direction is membership in a larger multi-disciplinary scientific community that encompasses both basic and applied researchers of an organ system or disease (e.g., HIV/AIDS, neurosciences). The other direction is identification with a smaller special interest group that focuses on a specific aspect of the larger organ system or disease, or alternatively on a technique that has use across organ system or disease research, often at the molecular level. Faculty identification with an academic discipline is more often through membership in a scientific organization than an academic department. Thus, bioscience and some of the pharmaceutical sciences have evolved toward an interdisciplinary structure, or a "nondisciplinary" structure, with individual researchers identifying with groups of other scientists who share a common interest in an organ system, disease, technique/instrumentation or who are focused on solving specific public health problems. Many colleges and schools of pharmacy have either renamed or combined pharmaceutical sciences with groups of other scientists who share a common interest in an "nondisciplinary" structure, with individual researchers identifying with other scientists who share a common interest in an organ system, disease, technique/instrumentation or who are focused on solving specific public health problems.

External financial support for IPs appears to be increasing, based upon statements encouraging multi- or interdisciplinary approaches to the complex public health problems needing solutions in many of the weekly Requests for Application (RFA) and Program Announcements (PA) in the NIH Guide. Existing NIH grant mechanisms that specifically promote inter-, multidisciplinary, and collaborative research include the Interactive Research Project Grants (IRPG), Program Project Grants (P01), Center Grants (P50), Cooperative Agreements (U01, U54), and administrative supplements to funded individual research grants for adding collaborators with "quantitative skills"(5,8,9). The National Institute of General Medical Sciences (NIGMS) has introduced small and large "glue" grants (R24, U54) to facilitate collaborative and interactive activities among NIH funded investigators at different academic institutions and the industry for the purpose of forming research teams to solve complex biological problems (10,11). The large glue grant RFA states, "Many scientists are now expressing a strong need for a type of support that will encourage scientific collaboration and provide for a higher level of coordination to solve problems requiring multifaceted approaches."

Other pertinent examples of interdisciplinary and instristitutional research activities are the constituent programs sponsored by the NIH's National Center for Research Resources Institutional Development Award Program (IDeA)(12). The IDeA Biomedical Research Infrastructure Networks (BRIN) and Centers for Biomedical Research Excellence (COBRE) programs have the goal of building research infrastructure and investigator competitiveness in institutions located in 23 states which have had a historically low aggregate success rate for NIH applications. BRIN and COBRE accomplish these goals through the support of collaborative research partnerships with and among campuses in the IDeA states. Several colleges/schools of pharmacy have taken a leadership and active participation role in funded BRIN and COBRE programs during the past several years(13).
Thus, it would appear that a major shift from the focus on the individual investigator approach to an interdisciplinary/collaborative approach to biomedical research is emerging. Is this shift in philosophy supported by a shift in funding? For fiscal years (FY) 1997-2001, the number and amount awarded for individual research projects (R01) increased approximately 36 percent and 67 percent, respectively, in close parallel to the increase in the extramural research budget. The number and amount awarded to large grants (P01, P50, U01, U54) over this period increased approximately 39 percent and 87 percent, respectively (14). Within NIGMS, the major finding institute for the pharmaceutical sciences, the number and amount for ROIs increased 25 percent and 50 percent, respectively, while the number and amount of large grants increased 60 percent and 279 percent, respectively2. The majority of this dramatic increase in large grants occurred in FYs 2000 and 2001, as the NIH budget was significantly increased as part of the Congressional intent to double the budget from 1998-2003. It is impossible to predict whether Congressional support for increasing the NIH budget with double-digit increases will continue, but it is not premature to suggest that the bioscience research supported by the NIH is becoming more collaborative.

The major NIH extramural funding mechanism remains the individual investigator grant (R01, R33, R21), but the need for multiple areas of expertise and technical skill to solve significant research problems does not reside in one principal investigator (PI). Therefore, individual investigator grant proposals often rely on others to contribute to the research effort, either as consultants, or co-investigators. This increase in the number of collaborators or co-PIs may be contributing to the ever-increasing size of R01 grants. Unfortunately, NIH only "credits" the award to one PI, which causes the untoward side effects of both underestimating the frequency of and discouraging interdisciplinary or collaborative research. Faculty who are not listed as the PI on an NIH award, yet contribute significantly to the proposal and the results of the research generated, may go unrecognized as independent investigators, negatively influencing their prospects for promotion and tenure. This, in turn, could lead to reluctance by new faculty to become involved in collaborative research efforts. It is doubtful whether NIH will or can change the “winner-take-all” designation of a single PI on research awards. Therefore, colleges, schools, and universities must address this issue, if the movement continues away from disciplinary-based graduate education and research and towards interdisciplinary and collaborative research.

In summary, there is a definite movement toward interdisciplinary, collaborative research that is being externally driven by the nature of bioscience research, and funding agencies that are interested in supporting collaborative approaches to “big” research problems. Internally, interdisciplinary research is being driven by faculty who are seeking collaborators throughout the university community who can contribute to solving important research problems and/or assist them in obtaining significant external funding support, administrators who view them as potential tools for changing the institution's academic culture, and by state governments through investment in infrastructure (e.g., buildings, equipment) and faculty resources whose primary motive for this investment is to generate potential economic returns (e.g., patents, products) for the university and supporting state government. Major government funding agencies are philosophically-supportive of collaborative research, but the mechanism for funding this type of research does not recognize the difficulty facing new investigators who must prove that they are "independent investigators" before they can obtain tenure or promotion in most academic institutions.

CHALLENGES AND SUGGESTIONS FOR COLLEGES AND SCHOOLS OF PHARMACY

The Commission on the Future of Graduate Education in the Pharmaceutical Sciences recommended:

31S

- **Colleges/schools must develop a philosophy with regard to rewarding faculty for participation in collaborative scholarship and IP membership, in addition to their performance of college/school and departmental responsibilities. This includes issues such as relative value of co-PI status on grants/contracts, multi-authored publications, and IP teaching outside of regular college/school instructional responsibilities.** An established and agreed upon philosophy is also important in those cases where the benefits to faculty participation in an IP may not be translated to the school or department. For example, a faculty member may have the choice of submitting a grant through the IP or the school/department. The IP may offer faculty a more attractive infrastructure for conducting research, or full or partial return of indirect costs to principal investigators, while the school/department may not. Thus, schools/departments may be placed in a position of "competing" for their own faculty, and conversely, faculty may be placed in a position of choosing between their primary appointment unit (which awards tenure), and their secondary appointment unit (which offers attractive perquisites).

- **Deans must insure that individual faculty participation in an IP is consistent with the overall mission of the institution so that faculty can place their efforts into activities that are valued by the administrative unit that provides promotion, tenure, and salary increases within the university structure. In addition to written policy and procedures, it is equally important to have open lines of communication that allow adjustment of faculty activities on a case-by-case basis. Increasingly, the Department Chair is assuming a more critical role in dealing with faculty who may make appointments in his/her department and IP. The leadership of the Department Chair in an IP growth environment is a critical and challenging issue in pharmacy education.**

- **The college/school must assess its research strengths and weaknesses (i.e., uniqueness) and should develop and/or strengthen a unique research focus of the faculty that would provide the institution a competitive advantage in its IP participation.** The qualifications of new college/school faculty may have to be evaluated both from the point-of-view of departmental needs and those of the IP in which faculty will be participating.

- **New faculty members with high research productivity potential are often attracted to the possibility of becoming a member of an IP. If they are recruited by the college/school for the purpose of**
having membership in an IP, it is extremely important that the college/school and IP have agreements in place for issues such as sharing salary, promotion and tenure expectations, intellectual property revenues if any, indirect costs from faculty grants, research support "credit," teaching responsibilities of the faculty in the professional, departmental graduate program, and IP program, if any, and graduate student support and space.

- Pharmaceutical sciences faculty have often played a major role in the development of research focus areas that are attractive to other university faculty, particularly those in larger units like the medical school. When this occurs, pharmacy's role can change quickly from innovator to spectator, as the faculty and financial resources available to a medical school to staff an IP are so much greater than those in pharmacy. This quantitative superiority can only be offset by the quality of pharmacy faculty involved in the IP. Although quantitatively outnumbered, many pharmacy faculty have maintained a leadership role in IPs, even though they are a small fraction of the membership. Support from the college/school's administration and faculty colleagues are extremely important to those pharmacy faculty playing important roles in an IP.

- Mentorship of new faculty who will serve as both members of the pharmacy faculty and an IP is particularly important to ensure that the faculty member has every opportunity to obtain tenure and/or promotion in his/her academic "home."

- Some IPs have the ability to recruit and appoint faculty. IP faculty may not have tenure-track appointments, but recurring appointments that may be dependent upon measures of research productivity or by their ability to generate partial support of their annual salaries (i.e., research professors). These IP research faculty may be interested in joint or adjunct appointments with academic departments in order to teach or supervise graduate students if those activities are not a function of their IP. Colleges/schools should have procedures in place to respond to these IP faculty requests that are consistent across the institution. The appropriate individuals in the college/school, the IP, and the faculty member must agree to joint appointment expectations.

- Institutions must have definitive guidelines for graduate student enrollment and support when the student's faculty research advisor has appointments in both a department with a recognized graduate degree program and an IP with the authority to award, enroll, and grant graduate degrees.

- IPs are generally initiated with an exclusive research focus, with teaching and service viewed as "extracurricular-type" activities. A potential conflict-of-commitment can be created between the IP and college/school, when IP faculty have their tenure-track appointment in a department or college/school. Those faculty who want to focus solely on research and eschew teaching, will find IPs very friendly places, until time comes for promotion and tenure decisions and their college/school has major responsibilities for teaching. Tenure track faculty, particularly new faculty, must be made aware that annual evaluation, salary adjustments, tenure promotion, teaching assignments, and staff support are generally made, with input, by their department or college/school, even though an IP may provide all or some space, travel support, and other research support.

College/School Programs

Although college/school programs were not the primary focus of the committee, it was recognized that these structures, small "c's," could play a significant role in the development of an interdisciplinary research focus within a college/school. Additionally, these collaborations can provide the focus for the development of inter- or multidisciplinary structures involving faculty from academic units across the university. Therefore colleges/school administrators/faculty should prospectively address potential issues arising from the formation of small "c's" within their institutions:

- Guidelines should be developed that address "c" membership, public relations, fund raising, reporting responsibility, administrative support, space, and financial support, if any, at a minimum. If there is cross-departmental faculty involvement, guidelines regarding center involvement in promotion and tenure decisions should be clearly stated in writing.

- There must be a clear management structure, no different than a department or equivalent office (e.g., office of academic services). Budget management, indirect cost recovery, salary savings policy and graduate student support should all be agreed upon and put into writing.

- The role(s) of the Department Chair and Center Director, if different, must be defined, since they will likely be responsible for management of some of the same people and space. Unless their relationship and responsibilities are very clear, faculty may be confused regarding their relationships with the center and the department.

CONCLUSIONS

There are many positive effects of the IP movement on university campuses, including new sources of research support, faculty positions, infrastructure, and the excitement that accompanies research and collaborating with creative individuals. In some institutions, IPs are replacing traditional departmental collegiate structures through consolidation of existing programs and are offering interdisciplinary graduate program tracks. In most institutions however, the IP structure is being overlaid upon an existing departmental structure, so faculty can have an academic department appointment with or without an IP appointment, or an IP appointment, with or without a joint or adjunct departmental appointment. It is this more common arrangement that has raised concerns of faculty unit commitment, loyalty, promotion and tenure decisions, indirect cost assignment, space and equipment accessibility, graduate student assignments, teaching responsibilities, etc. In this multi-appointment environment, colleges/schools must develop policies, guidelines, and especially a philosophy of IP involvement that is approved by the university administration, and openly and frequently shared with existing faculty and those being recruited for roles in both the college/school and an IP.

IPs, like traditional academic departments, have the potential to be divisive or collaborative, resulting in conflicts or synergies. There is nothing inherently good or bad about them. However, IPs are a rapidly growing administrative mechanism developed for the purpose of assisting the university add regional economic development through focused research upon its existing multiple missions of teaching, research, and service. If IPs have a clear and distinctive mission and effective administration they can provide potential synergies to the existing units of the university. Conversely, IPs can produce significant disruptions to college/school administration/faculty relations unless appropriate proactive steps are taken.

Recommendations for AACP

1. AACP should consider programming for faculty and administrators on the increasing role IPs are having on research, teaching, and service responsibilities of pharmacy faculty, particularly those with dual appointments in the college/school of pharmacy and an university-wide IP.

2. AACP should encourage its members to share their specific policies and procedures regarding appointments, space allocations, financial support, and evaluation and tenure procedures for faculty who hold appointments within the college/school and an IP. This could be accomplished through the posting of such documents on the AACP Web site.

3. Future AACP leadership programs should include a substantive discussion of the impact of the growth of IPs on faculty recruitment, appointment, retention, commitment, and evaluation with in the college/school of pharmacy.
References

(6) Burroughs Wellcome Fund, "Institutional Awards at the Scientific Interface." (www.bwfund.org/interfaces_in_science_institutional.htm).

(7) "Graduate Program in Quantitative Biology," University of California at San Francisco, (www.pqb.ucsf.edu).

(14) "NIH Awards by Fiscal Year and Activity," (http://grants1.nih.gov/grants/award/research/byeact9201.htm).