Pharmacists’ Sources of Job Satisfaction: Inter-Gender Differences in Response

Manuel J. Carvajal
Department of Economics, Florida International University, Miami FL 33199

Patrick C. Hardigan
College of Pharmacy, Nova Southeastern University, Fort Lauderdale FL 33328

This paper presents job-satisfaction functions for 49 male and 74 female practicing pharmacists. Four extrinsic determinants (earnings, availability of employment opportunities, supervisor’s reliability, and job atmosphere) and four intrinsic determinants (practice site, perception of job importance, autonomy, and burnout) are identified as explanatory variables. The predictive value of the model is strong. Men and women exhibit different preferences for trading off sources of job satisfaction. Men do not view earnings, advancement opportunities, supervisor’s reliability, or burnout as relevant determinants of their work-contentment level. Job autonomy is more important to women than to men, but job atmosphere and perception of job importance are more important to men than to women. Working in a retail-chain setting is negatively related to job satisfaction of pharmacists from both genders, but men are affected more than women. The behavior of this variable is consistent with the existence of a two-fold compensating differential.

INTRODUCTION
Job satisfaction has been the object of study by psychologists, anthropologists, and sociologists for many years. Almost a quarter of a century ago, Locke compiled more than 3,300 articles on this topic and related issues(1). The number of publications has continued to grow since then, as job satisfaction has been linked to workers’ productivity, absenteeism, turnover, and organizational effectiveness(2,3), all of them affecting patient well-being in the health-care delivery system. Yet, until recently economists and administrators have ignored the simple concept of contentment in the workplace and have focused instead on estimating earnings functions and differentials as the methodology of choice to explain job-market outcomes(4-8).

During this period the gender composition of the pharmacy profession has changed substantially. In 1960 only 12.9 percent of pharmacy graduates were women. This proportion has risen steadily to 22.7 percent in 1972, 52.6 percent in 1984, and approximately two-thirds today(9-11). Women, often forced by society to make career versus family-life choices not typically confronted by men, are no longer an exception in the marketplace; they are a norm. Therefore, understanding the nature and magnitude of inter-gender differences in aspirations, preferences, and behavior of pharmacists, as well as other health professionals, is essential to any type of assessment or forecasting(12,13).

Traditionally in business and economics, inter-gender comparisons have been analyzed under the prism of investments in human capital (i.e., education, on-the-job training, etc.). These investments are expected to yield approximately the same rates of return regardless of who does the investment, except for errors of measurement or market imperfections. The investments are designed to increase workers’ productivity and, consequently, their income(14,15). If earnings disparities between men and women persist after controlling for occupation, schooling, skills, experience, and other earnings determinants, discrimination is suspected(16,17).

This line of reasoning assumes the existence of a uniform set of job attitudes and expectations, which vary within as much as between genders. But what if this assumption is not correct? What if, say, male pharmacists systematically attempted to maximize salary, benefits, and advancement opportunities without regard to nature of job activity, stress associated with it, rigidity of employers’ policies, or similar inconveniences while female pharmacists showed a greater propensity to trade off financial rewards for more flexible work schedules or a more pleasant job atmosphere? Then observed differences in pay should not be interpreted necessarily as evidence of discrimination or even different marginal productivities, but merely as a compensating differential. Along these lines, Cook(18) and Major and Konar(17) argue that, through the socialization process, men and women develop different attitudes toward occupational achievement and work contentment which often lead to systematic inter-gender variations in perceptions, expectations, and behavior. Unequal, rather than equal, earnings for men and women would reflect rationality of response. Thus, the variable that should be used to measure job-market outcomes (i.e., workers passing by or leaving certain jobs while accepting or searching for others) should be the overall level of job satisfaction.

1A compensating differential is the earnings difference required to compensate a person or group of persons for doing a less desirable job (i.e., deriving a lower level of job satisfaction).

Am. J. Pharm. Educ., 64, 420-425(2000); received 3/1/00; accepted 8/23/00.
or searching for others) should be the overall level of job satisfaction, of which earnings are only one determinant.

Job satisfaction is a subjective variable which does not lend itself readily to quantification. It is experienced when pharmacists fulfill whatever needs or considerations they deem important in their work(19,20). These considerations are influenced by intrinsic or extrinsic determinants. Intrinsic determinants pertain to the nature of, and activities inherent to, a position or set of tasks, such as intellectual stimulation or feeling of accomplishment; extrinsic determinants focus on external factors such as relations with coworkers or job security. Preferences for intrinsic and extrinsic determinants are not entirely random; they are systematically related to pharmacists’ demographic characteristics, the most important of which seems to be gender(11,21).

TABLE I. Means and standard deviations (in parentheses) of selected variables, by gender

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total</th>
<th>Gender</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of observations</td>
<td>Number of observations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>123</td>
<td>49</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Job-satisfaction index</td>
<td>17.585</td>
<td>18.306a</td>
<td>17.108a</td>
<td></td>
</tr>
<tr>
<td>(5 - 25 scale)</td>
<td>(4.421)</td>
<td>(4.423)</td>
<td>(4.354)</td>
<td></td>
</tr>
<tr>
<td>Extrinsic Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual earnings</td>
<td>64.341</td>
<td>67.265b</td>
<td>62.405b</td>
<td></td>
</tr>
<tr>
<td>(thousands of dollars)</td>
<td>(13.411)</td>
<td>(14.199)</td>
<td>(12.492)</td>
<td></td>
</tr>
<tr>
<td>Advancement-opportunities index</td>
<td>3.626</td>
<td>3.551</td>
<td>3.676</td>
<td></td>
</tr>
<tr>
<td>(1 - 5 scale)</td>
<td>(0.983)</td>
<td>(0.970)</td>
<td>(0.988)</td>
<td></td>
</tr>
<tr>
<td>Supervisor’s-reliability index</td>
<td>3.683</td>
<td>3.612</td>
<td>3.730</td>
<td></td>
</tr>
<tr>
<td>(1 - 5 scale)</td>
<td>(1.084)</td>
<td>(1.066)</td>
<td>(1.094)</td>
<td></td>
</tr>
<tr>
<td>Job-atmosphere index</td>
<td>4.089</td>
<td>4.122</td>
<td>4.068</td>
<td></td>
</tr>
<tr>
<td>(1 - 5 scale)</td>
<td>(0.744)</td>
<td>(0.659)</td>
<td>(0.794)</td>
<td></td>
</tr>
<tr>
<td>Intrinsic Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice site (percent)</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Retail chain</td>
<td>0.431</td>
<td>0.510b</td>
<td>0.378b</td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td>0.293</td>
<td>0.245</td>
<td>0.324</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.276</td>
<td>0.245</td>
<td>0.298</td>
<td></td>
</tr>
<tr>
<td>Job-importance index</td>
<td>4.195</td>
<td>4.245</td>
<td>4.162</td>
<td></td>
</tr>
<tr>
<td>(1 - 5 scale)</td>
<td>(0.803)</td>
<td>0.846</td>
<td>(0.772)</td>
<td></td>
</tr>
<tr>
<td>Job-autonomy index</td>
<td>4.033</td>
<td>4.061</td>
<td>4.014</td>
<td></td>
</tr>
<tr>
<td>(1 - 5 scale)</td>
<td>(0.962)</td>
<td>(0.977)</td>
<td>0.951</td>
<td></td>
</tr>
<tr>
<td>Burnout: Time in current position</td>
<td>3.302</td>
<td>3.416</td>
<td>3.226</td>
<td></td>
</tr>
<tr>
<td>(years)</td>
<td>(3.472)</td>
<td>(3.620)</td>
<td>(3.369)</td>
<td></td>
</tr>
</tbody>
</table>

*Inter-gender difference statistically significant (α < 0.20).
**Inter-gender difference statistically significant (α < 0.10).

Finally, another feature-advantage as well as disadvantage-of the data set is that most pharmacists practice in South Florida. Obviously their responses to job-satisfaction determinants are not necessarily representative of pharmacists throughout the nation. Yet their somewhat limited location eliminates the effect of geographical disparities as an unwanted source of variation in the determination of work contentment.

PURPOSE AND DATA

This paper seeks to formulate and estimate, using ordinary least squares, job-satisfaction functions for male and female pharmacists. The functions contain eight determinants or explanatory variables: four extrinsic and four intrinsic determinants. After the coefficients of the explanatory variables are estimated, inter-gender differences in the coefficients are explored. The data consist of 49 men and 74 women practicing pharmacy in the State of Florida in the summer of 1997. They are graduates (either with a BS or a PharmD degree) from Nova Southeastern University; in other words, their BS degree is from another institution, and they were pharmacy practitioners already at the time they were going back to school. Therefore, the data set is not as homogeneous as it might seem initially; in fact, it is fairly diverse in terms of age and ethnicity.

Another apparent disadvantage is that, included in the sample, are graduates of only one school, thus limiting the scope of analytical inferences. This is a valid criticism, although it is mitigated by the fact that almost a quarter (22.8 percent) of pharmacists in the data set have received only their post-baccalaureate PharmD degree from Nova Southeastern University; in other words, their BS degree is from another institution, and they were pharmacy practitioners already at the time they were going back to school. Therefore, the data set is not as homogeneous as it might seem initially; in fact, it is fairly diverse in terms of age and ethnicity.

Finally, another feature-advantage as well as disadvantage-of the data set is that most pharmacists practice in South Florida. Obviously their responses to job-satisfaction determinants are not necessarily representative of pharmacists throughout the nation. Yet their somewhat limited location eliminates the effect of geographical disparities as an unwanted source of variation in the determination of work contentment.

The nature of the data poses advantages and disadvantages. An obvious disadvantage is its relatively small size. While the number of observations is sufficient to make relevant statistical comparisons, a larger size would have been less constraining and probably more reliable. Fortunately, the gender distribution of the sample is similar to the distribution of the population from which it is drawn, which eases the reliability constraint related to representativeness.

Another apparent disadvantage is that, included in the sample, are graduates of only one school, thus limiting the scope of analytical inferences. This is a valid criticism, although it is mitigated by the fact that almost a quarter (22.8 percent) of pharmacists in the data set have received only their post-baccalaureate PharmD degree from Nova Southeastern University; in other words, their BS degree is from another institution, and they were pharmacy practitioners already at the time they were going back to school. Therefore, the data set is not as homogeneous as it might seem initially; in fact, it is fairly diverse in terms of age and ethnicity.

Finally, another feature-advantage as well as disadvantage-of the data set is that most pharmacists practice in South Florida. Obviously their responses to job-satisfaction determinants are not necessarily representative of pharmacists throughout the nation. Yet their somewhat limited location eliminates the effect of geographical disparities as an unwanted source of variation in the determination of work contentment.

The age standard deviation (7.7 years) of the data set is large relative to its mean (33.1 years), which is a sign of a scattered distribution. In terms of ethnicity, 64.2 percent are Non-Hispanic White, 2.4 percent are Non-Hispanic Black, 22.8 percent are Hispanic, 5.7 percent are Asian, and 4.9 percent are classified as “other.”

By the summer of 1997, Nova Southeastern University had conferred 476 BS and PharmD degrees. The questionnaire from which data for this study are drawn was mailed to all 476 alumni. Six weeks later, a follow-up mailing was sent. A total of 132 questionnaires were returned for a 27.7 percent response rate. Nine responses were deleted because of incomplete information, thus leaving a sample consisting of 123 observation units.

The gender composition of the sample is 39.8 percent men and 60.2 percent women; in the population, 35.9 percent of the graduates are men and 64.1 percent are women.
Job satisfaction is measured in this study as a composite index of response to the following five statements: 1. “I find real enjoyment in my job;” 2. “I like my job better than the average worker;” 3. “I would not consider taking another job;” 4. most days I am enthusiastic about my job;” and 5. “I feel fairly well satisfied with my job.” These five statements are taken from an 18-item index of global satisfaction developed by Brayfield and Rothe(22) and tested by Agbo, Mueller, and Price(23). The validity and reliability of the five statements also have been demonstrated by Price and Mueller(24,25) and by Hardigan and Carvajal(26) using autonomy, distributive justice, promotional opportunity, task significance, supervisory support, integration, positive affectivity, negative affectivity, and work motivation to predict job satisfaction.

Responses to the five-item job-satisfaction index are recorded using a five-point Likert scale for each statement. They are weighted as follows: A value of 1 for “strongly disagree,” 2 for “disagree,” 3 for “neutral,” 4 for “agree,” and 5 for “strongly agree.” The job satisfaction index is the arithmetic sum of the quantified values of the responses to the five statements. The index ranges from a minimum value of five points for respondents who “strongly disagree” with all five statements to a maximum value of 25 points for respondents who “strongly agree” with all five statements. (Table I shows variation by gender in the job-satisfaction index and the explanatory variables of the model.) The overall index shows a mean response per statement half way between “neutral” and “agree,” with men recording a slightly (but significantly) higher level than women.5

Extrinsic Determinants

Four extrinsic determinants of job satisfaction are considered in this paper. The first is earnings, which, according to Amirault(5) and Smith and Powell(27), is the primary reason why people go to school and work. A review of the literature suggests that the level of earnings exerts a substantial and positive effect on job satisfaction6(28); other things equal, greater earnings lead to greater satisfaction. The mean annual income of pharmacists in the sample is $64,341. On average, men earn 7.8 percent higher income levels than do women, the difference being statistically significant.

The second determinant of job satisfaction is an index of advancement opportunities. Using a five-point Likert scale, this variable measures response to “there is an opportunity for advancement at your pharmacy.” Job satisfaction is expected to vary directly with this index, showing a natural aversion to dead-end positions(23,29,30). The overall average response lies between “neutral” and “agree,” with no significant difference between men and women.

Perception of reliability of one’s supervisor is another extrinsic determinant. Supervisor’s support is viewed in the model as adding to work contentment by increasing confidence and relieving anxiety(21,31). When asked if “my supervisor can be relied on when things get tough at work,” pharmacists’ overall response lies between “neutral” and “agree.” No significant inter-gender difference is detected.

Also among extrinsic determinants is an index of job atmosphere. Responses are weighted as follows: A value of 1 for “not friendly at all,” 2 for “very little friendliness,” 3 for “somewhat friendly,” 4 for “quite friendly,” and 5 for “very friendly.” Mean responses are very similar for men and women, slightly above the “quite friendly” mark. This variable is intended to measure the effect on job satisfaction of interpersonal relations, which appear in several studies as a significant concern, especially for women(13,17,27,32).

Intrinsic Determinants

Practice site is the first intrinsic determinant identified here. Various studies indicate that although, on average, retail-chain pharmacists earn higher salaries and better benefits, they are more discontent with their jobs vis-a-vis pharmacists practicing in other settings(31,33,34). This probably occurs because work pressures, brought about by high productivity demands in dispensing drugs, not only create stress but also prevent retail-chain practitioners from getting involved in drug-related patient care as much as they would like. The literature clearly shows that spending relatively more time on clinical activities increases job satisfaction(19,35).

The effect of practice site on job satisfaction acquires a new dimension when one considers that women, traditionally attracted to hospital pharmacy, remain underrepresented in the retail sector(21,36). Yet recent studies have not been able to identify inter-gender differences in the setting in which pharmacists and students choose or prefer to practice(11,37). The empirical evidence here shows that proportionately (and significantly) more men than women practice in a retail site. The “other” category consists of a potpourri of settings which include retail independent, nursing home, consultant, mail order, and managed care.

The second intrinsic determinant is a job-importance index. Using a Likert scale, pharmacists are asked to react to the following statement: “My work is a significant contribution to the successful operation of the organization.” The hypothesis is that perceived importance of one’s job exerts a positive influence on job satisfaction. There seems to be consensus among respondents regarding the relevance of their work; in fact, this is the variable in the model with the greatest incidence of agreement. No significant difference emerges between men and women.

The third intrinsic determinant is an autonomy index. Specifically, pharmacists are asked “how much freedom do you have as to how you do your job?” Responses are quantified as follows: A value of 1 for “no freedom at all,” 2 for “very little freedom,” 3 for “some freedom,” 4 for “quite a lot of freedom,” and 5 for “a great deal of freedom.” Presumably more autonomy is conducive to greater job satisfaction(29,33,38), and both men and women in the sample report enjoying a high level of autonomy in their jobs. No significant inter-gender disparity is detected.

Job burnout, approximated by number of years in current position, is the last independent variable of the model. This is a personal-characteristic indicator which, because of its nature, affects job satisfaction intrinsically. Longevity in one’s job is expected to exert a negative impact on satisfaction because, with time, tasks become repetitive and boredom tends to sink in(30,34,39). The overall current-job length of employment mean is three years and four months, with no significant difference recorded between men and women. Across the board standard deviation values are greater than their respective

4Throughout this paper statistical significance corresponding to .01, .05, .10, and .20 alpha levels are indicated. In the social sciences the degree of control over the explanatory variables is much less than in the natural sciences.

mean values, which shows a lot of dispersion in the distribution of this variable.

JOB SATISFACTION FUNCTIONS

The empirical equations estimated here interpret male and female pharmacists’ levels of job satisfaction as approximately linear functions of the variables discussed in the previous section: Earnings, advancement opportunities, supervisor’s reliability, job atmosphere, practice site, job importance, autonomy, and burnout. Thus,

\[S_{ij} = \beta_{v_i} Y_{ij} + \beta_{p_i} P_{ij} + \beta_{v_i} V_{ij} + \beta_{a_i} A_{ij} + \beta_{t_i} T_{ij} + \beta_{b_i} B_{ij} + \beta_{n_i} N_{ij} + \beta_{u_i} U_{ij} + u_{ij} \]

where

- \(S_{ij} \) is a 5-25 composite scale of job satisfaction (higher numbers indicating greater satisfaction) reported by the jth pharmacist of the ith gender;
- \(Y_{ij} \) is earnings (in thousands of dollars) reported by the jth pharmacist of the ith gender;
- \(P_{ij} \) is a 1-5 index of advancement opportunities (higher numbers indicating greater opportunity) reported by the jth pharmacist of the ith gender;
- \(V_{ij} \) is a 1-5 index of supervisor’s reliability (higher numbers indicating greater reliability) reported by the jth pharmacist of the ith gender;
- \(A_{ij} \) is a 1-5 index of job atmosphere (higher numbers indicating a friendlier atmosphere) reported by the jth pharmacist of the ith gender;
- \(T_{ij} \) is a dummy variable for practice site, receiving a value of one if the jth pharmacist of the ith gender works in a retail-chain setting, a value of zero otherwise;
- \(I_{ij} \) is a job-importance index (higher numbers indicating greater importance) reported by the jth pharmacist of the ith gender;
- \(N_{ij} \) is a job-autonomy index (higher numbers indicating greater autonomy) reported by the jth pharmacist of the ith gender;
- \(B_{ij} \) is a job-burnout index, approximated by number of years in current position, reported by the jth pharmacist of the ith gender;
- \(U_{ij} \) is a normally, independently distributed stochastic disturbance term, with mean zero and variance \(\sigma_i^2 \), of the jth pharmacist of the ith gender;

\(\beta_{v_i}, \ldots, \beta_{u_i} \) are the least-squares coefficients of the ith gender being estimated; and where

- \(i = 1, 2 \) for men and women, respectively, and
- \(j = 1, \ldots, 49 \) for men and \(j = 1, \ldots, 74 \) for women.

DISCUSSION

In this section, least-squares estimates of the empirical model are presented and discussed. The estimates, along with their standard errors, levels of significance, and elasticities of pertinent variables, appear in Table II. The computed F values are significant below the 0.01 alpha level and adjusted R² values are higher than those of similar cross-sectional studies related to job satisfaction and other topics.(7,27,28,40).

Contrary to the reasoning by Lueptow(41), who argues that relatively more men than women regard income as a primary source of satisfaction, the least-squares earnings coefficient for men lacks statistical significance. The coefficient for women is both significant and negative, suggesting that higher levels of income are associated with activities which detract from job satisfaction. This may indicate the existence of a compensating differential for female pharmacists(34,38). The estimated earnings elasticity value shows that a 10 percent rise in earnings decreases women’s job satisfaction by almost three percent.

The advancement-opportunities index coefficient is significant for women but not for men. Again this outcome contradicts the view that men are more concerned than are women with business aspects of pharmacy, including promotions(9). The evidence here shows that female pharmacists’ levels of job satisfaction are affected consistently by availability of advancement opportunities, whereas male pharmacists’ job satisfaction levels are not affected consistently. Women’s satisfaction responsiveness to changes in opportunity is mild, as indicated by the rather low elasticity value.

Table II. Estimates of least-squares coefficients, their standard errors (in parentheses), and levels of significance, and elasticities for selected variables (in brackets), by gender

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrinsic Variables</td>
<td>Men</td>
</tr>
<tr>
<td>Earnings (Y_i)</td>
<td>-0.0253</td>
</tr>
<tr>
<td>(0.0304)</td>
<td>(0.0289)</td>
</tr>
<tr>
<td>advancement-opportunities index (P_i)</td>
<td>0.5206</td>
</tr>
<tr>
<td>(0.5132)</td>
<td>(0.4162)</td>
</tr>
<tr>
<td>supervisor’s-reliability index (V_i)</td>
<td>0.1649</td>
</tr>
<tr>
<td>(0.4727)</td>
<td>(0.3460)</td>
</tr>
<tr>
<td>job-atmosphere index (A_i)</td>
<td>1.6437</td>
</tr>
<tr>
<td>(0.6862)</td>
<td>(0.4459)</td>
</tr>
<tr>
<td>(0.370)</td>
<td>(0.222)</td>
</tr>
<tr>
<td>Intrinsic Variables</td>
<td></td>
</tr>
<tr>
<td>works in retail-chain setting (T_i)</td>
<td>-3.3615</td>
</tr>
<tr>
<td>(0.9749)</td>
<td>(0.6498)</td>
</tr>
<tr>
<td>job-importance index (I_i)</td>
<td>2.0760</td>
</tr>
<tr>
<td>(0.5993)</td>
<td>(0.4931)</td>
</tr>
<tr>
<td>(0.481)</td>
<td>(0.351)</td>
</tr>
<tr>
<td>job-autonomy index (N_i)</td>
<td>0.9037</td>
</tr>
<tr>
<td>(0.5011)</td>
<td>(0.4275)</td>
</tr>
<tr>
<td>(0.200)</td>
<td>(0.381)</td>
</tr>
<tr>
<td>burnout: Time in current position (B_i)</td>
<td>-0.0102</td>
</tr>
<tr>
<td>(0.1289)</td>
<td>(0.0852)</td>
</tr>
<tr>
<td>(0.200)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>F statistic</td>
<td>7.737^*</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.569</td>
</tr>
</tbody>
</table>

*Statistically significant (α = <0.01). *Statistically significant (α = <0.10).
**Statistically significant (α = <0.05). *Statistically significant (α = <0.20).

Linear functions yield the most significant least-squares coefficients. Neither quadratic nor semilog transformations yield more significant estimates or increase adjusted R².

Other variables were tried, but without statistically significant results. They are age, ethnicity, number of years as registered pharmacist, perception of fairness in the allocation of salaries, and ability to make on-the-job decisions.

Elasticity is an indicator of responsiveness. It measures the ratio of the percentage change in the dependent variable, in this case the job-satisfaction index, to a small percentage change in an independent variable (i.e., earnings, the advancement-opportunities index, etc.). Only elasticities of statistically significant coefficients are reported.
Supervisor’s reliability seems to increase female job satisfaction, but is not a relevant variable in the male equation. This finding is consistent with two ideas discussed by Betz and O’Connell: one is that relatively more women than men are attracted to employee status because their demanding roles of wives and mothers allow them less time to own and run a business; the other is that, on average, men more than women dislike being supervised(9). The elasticity value is low, suggesting that although supervisor’s reliability is a statistically significant variable for women, its influence on job satisfaction is moderate.

As expected, job atmosphere exerts a positive effect on the job-satisfaction index of both genders. The elasticity values reveal that men’s satisfaction is more responsive than women’s satisfaction to changes in job atmosphere, which does not lend credence to the claim that relatively more women than men emphasize interpersonal values in the workplace(41).

Intrinsic Variables

Practice-site coefficients are statistically significant and negative, thus confirming that working in a retail-chain setting is a source of discontentment. This conclusion is stronger for male than female pharmacists both in terms of magnitude and statistical significance. Yet, it may be recalled that men tend to concentrate in retail-chain sites. A single comparison of means might explain why-on average, retail-chain pharmacists in the sample earn almost $5,000 per year more than their non-chain counterparts, and the difference is statistically significant. Therefore, a two-fold compensating differential probably occurs here: not only might retail-chain pharmacists earn more income because they hold otherwise less desirable jobs vis-a-vis non-chain pharmacists, but men might earn a higher level of income than do women partly because the magnitude of their discontentment with the retail-chain environment is greater. Obviously the validity of the second argument is limited by the fact that the inter-gender disparity persists, although it is reduced, within non-chain pharmacists.

Least-squares coefficients for the job-importance index are highly significant for both genders. Their positive sign indicates that, other things equal, job satisfaction increases as pharmacists perceive that what they do is of substance to their institutions. Job satisfaction is slightly more job-importance elastic for men than for women.

As expected, the empirical evidence reveals that autonomy on the job exerts a positive influence on pharmacists’ satisfaction. Judging by the size of the coefficients, their level of significance, and the estimated elasticity values, this influence is stronger for women than for men, which is inconsistent with the claim by Betz and O’Connell that relatively more men than women are likely to seek autonomy in their work setting(9).

Job burnout, approximated by number of years in current position, is a weak variable. The men’s coefficient lacks statistical significance and the women’s coefficient is barely significant. The positive sign of the latter tends to negate the existence of a burnout factor; as female pharmacists gain seniority, they seem to enjoy their jobs more. However, the size of the elasticity value suggests that this is a tenuous effect.

Retail-chain pharmacists earn, on average, $67,075 per year, and their standard deviation is $8,303. Non-chain pharmacists’ average earnings are $62,271 and their standard deviation is $15,935. The differential also exists among non-chain pharmacists, men retail-chain, $69,800 and $8,809; men non-chain, $64,625 and $17,809; women retail-chain, $64,683 and $6,976; and women non-chain, $61,043 and $14,715, respectively.

SUMMARY AND CONCLUSION

The methodology and results of this paper show that although job satisfaction is a subjective and elusive concept which does not lend itself readily to quantification, it can be interpreted as a function of work-related situations. Some of these situations, called intrinsic determinants of job satisfaction, pertain to the nature of, and activities inherent to, a position or set of tasks; these are approximated here with a dummy variable for practice site, a job-importance index, autonomy, and burnout. Others, called extrinsic determinants, focus on extraneous factors; earnings, availability of advancement opportunities, supervisor’s reliability, and job atmosphere are used to explain extrinsic variation in job satisfaction.

The predictive power of the model is strong: F values are significant, below the 0.01 probability level, and adjusted R² values are 0.569 for men and 0.596 for women, very high for cross-sectional analysis. Although both adjusted R² values are similar, the model seems to explain better the behavior of women. Every coefficient is statistically significant in the female equation, whereas in the male equation the coefficients of three extrinsic variables and one intrinsic variable lack significance. These findings suggest that men do not view earnings, advancement opportunities, supervisor’s reliability, or burnout as relevant determinants of their work-contentment level. Job autonomy is more important to women than to men, in terms of both statistical significance and elasticity values. However, for the two variables in which the coefficients for both genders appear with the same levels of significance (i.e., job atmosphere and job importance), job-satisfaction responsiveness, measured by the elasticity values, is greater for men than for female pharmacists. Finally, working in a retail-chain setting causes dissatisfaction to all pharmacists, but it affects men more than it affects women. The behavior of this variable might be explained by the presence of a two-fold compensating differential: (i) The higher level of income earned by retail-chain pharmacists vis-a-vis their non-chain peers, on average nearly $5,000 annually, might compensate retail-chain pharmacists vis-a- vis their non-chain pharmacists for doing a less desirable job; and (ii) men earn more than women, on average also about $5,000 per year, perhaps as compensation for the apparently greater extent of their dissatisfaction with the retail-chain setting, as evinced by the relative sizes of the coefficients (over three and one-half times greater).

Because of the limitations of the sample and the subjective and complex nature of many of these variables, the results should be regarded as necessarily preliminary. Yet the empirical evidence here suggests that indeed men and women exhibit different preferences for trading off financial rewards and other extrinsic as well as intrinsic sources of job satisfaction. The arguments underscore the need to broaden, beyond mere financial considerations, the analytical context within which pharmacists make job-related decisions. Future research might expand the focus and include inter-ethnic along with inter-gender comparisons to accommodate the ongoing trend toward diversity in the ethnic mix of the profession. This expanded focus inevitably must address little understood variables, relationships, and structural factors related to hiring and promotion mechanisms and practices in the marketplace, patients’ biases and preferences, social norms, and government regulations that affect men and women, as well as persons of various ethnic groups, differently.
References

